Update inference.py

This commit is contained in:
2026-02-03 14:17:33 +08:00
parent 0b168057ca
commit 06bcaad8d4

View File

@@ -1,249 +1,119 @@
from model import TransClassifier
from transformers import AutoTokenizer
from data_process import extract_json_data, Formatter
import torch
import json
from typing import Dict, List, Optional
import os
import random
import warnings
warnings.filterwarnings("ignore")
valid_keys = [
"Core_Fear_Source", "Pain_Threshold", "Time_Window_Pressure", "Helplessness_Index",
"Social_Shame", "Payer_Decision_Maker", "Hidden_Wealth_Proof", "Price_Sensitivity",
"Sunk_Cost", "Compensatory_Spending", "Trust_Deficit", "Secret_Resistance", "Family_Sabotage",
"Low_Self_Efficacy", "Attribution_Barrier", "Emotional_Trigger", "Ultimatum_Event", "Expectation_Bonus",
"Competitor_Mindset", "Cognitive_Stage", "Follow_up_Priority", "Last_Interaction", "Referral_Potential"
]
ch_valid_keys = [
"核心恐惧源", "疼痛阈值", "时间窗口压力", "无助指数",
"社会羞耻感", "付款决策者", "隐藏财富证明", "价格敏感度",
"沉没成本", "补偿性消费", "信任赤字", "秘密抵触情绪", "家庭破坏",
"低自我效能感", "归因障碍", "情绪触发点", "最后通牒事件", "期望加成",
"竞争者心态", "认知阶段", "跟进优先级", "最后互动时间", "推荐潜力"
]
all_keys = valid_keys + ["session_id", "label"]
en2ch = {en:ch for en, ch in zip(valid_keys, ch_valid_keys)}
d1_keys = valid_keys[:5]
d2_keys = valid_keys[5:10]
d3_keys = valid_keys[10:15]
d4_keys = valid_keys[15:19]
d5_keys = valid_keys[19:23]
class InferenceEngine:
def __init__(self, backbone_dir: str, ckpt_path: str = "best_ckpt.pth", device: str = "cuda"):
self.backbone_dir = backbone_dir
self.ckpt_path = ckpt_path
self.device = device
# 加载 tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(backbone_dir)
print(f"Tokenizer loaded from {backbone_dir}")
# 加载模型
self.model = TransClassifier(backbone_dir, device)
self.model.to(device)
if self.ckpt_path:
self.model.load_state_dict(torch.load(ckpt_path, map_location=device))
print(f"Model loaded from {ckpt_path}")
else:
print("Warning: No checkpoint path provided. Using untrained model.")
self.model.eval()
print("Inference engine initialized successfully.")
self.formatter = Formatter(en2ch)
def inference_batch(self, json_list: List[str]) -> dict:
"""
批量推理函数,输入为 JSON 字符串列表输出为包含转换概率的字典列表。为防止OOM列表最大长度为8。
请注意Json文件中的词条数必须大于等于10.
"""
assert len(json_list) <= 8, "单次输入json文件数量不可超过8。"
id2feature = extract_json_data(json_list)
# print(id2feature) # id2feature
message_list = []
for id, feature in id2feature.items():
messages = self.formatter.get_llm_prompt(feature)
message_list.append(messages)
inputs = self.tokenizer.apply_chat_template(
message_list,
tokenize=False,
add_generation_prompt=True,
enable_thinking=False
)
model_inputs = self.tokenizer(
inputs,
padding=True,
truncation=True,
max_length=2048,
return_tensors="pt"
).to(self.device)
with torch.inference_mode():
with torch.amp.autocast(device_type=self.device, dtype=torch.bfloat16):
outputs = self.model(model_inputs)
# 1. 计算分类标签argmax
preds = torch.argmax(outputs, dim=1).cpu().numpy().tolist()
# 2. 计算softmax概率核心修正转CPU、转numpy、转列表解决Tensor序列化问题
outputs_float = outputs.float() # 转换为 float32 避免精度问题
probs = torch.softmax(outputs_float, dim=1) # probs: [B, 2]
# 转换为CPU的numpy数组再转列表每个样本对应2个类别的概率
probs = probs.cpu().numpy().tolist()
# 返回格式labels是每个样本的分类标签列表probs是每个样本的类别概率列表
return {"labels": preds, "probs": probs}
def inference(
self,
featurs : dict[str ,dict]
):
assert len(featurs) <= 8, "单次输入json文件数量不可超过8。"
message_list = []
for id, feature in featurs.items():
messages = self.formatter.get_llm_prompt(feature)
message_list.append(messages)
inputs = self.tokenizer.apply_chat_template(
message_list,
tokenize=False,
add_generation_prompt=True,
enable_thinking=False
)
model_inputs = self.tokenizer(
inputs,
padding=True,
truncation=True,
max_length=2048,
return_tensors="pt"
).to(self.device)
with torch.inference_mode():
with torch.amp.autocast(device_type=self.device, dtype=torch.bfloat16):
outputs = self.model(model_inputs)
# 1. 计算分类标签argmax
preds = torch.argmax(outputs, dim=1).cpu().numpy().tolist()
# 2. 计算softmax概率核心修正转CPU、转numpy、转列表解决Tensor序列化问题
outputs_float = outputs.float() # 转换为 float32 避免精度问题
probs = torch.softmax(outputs_float, dim=1) # probs: [B, 2]
# 转换为CPU的numpy数组再转列表每个样本对应2个类别的概率
probs = probs.cpu().numpy().tolist()
# 返回格式labels是每个样本的分类标签列表probs是每个样本的类别概率列表
return {"labels": preds, "probs": probs}
def inference_sample(self, json_path: str) -> dict:
"""
单样本推理函数,输入为 JSON 字符串路径,输出为包含转换概率的字典。
请注意Json文件中的词条数必须大于等于10.
"""
return self.inference_batch([json_path])
# 配置参数
backbone_dir = "Qwen3-1.7B"
ckpt_path = "best_ckpt.pth"
device = "cuda"
engine = InferenceEngine(backbone_dir, ckpt_path, device)
if __name__ == "__main__":
# 配置参数
backbone_dir = "Qwen3-1.7B"
ckpt_path = "best_ckpt.pth"
device = "cuda"
engine = InferenceEngine(backbone_dir, ckpt_path, device)
from data_process import extract_json_files
import random
# 获取成交和未成交的json文件路径
deal_files = extract_json_files("deal")
not_deal_files = extract_json_files("not_deal")
def filter_json_files_by_key_count(files: List[str], min_keys: int = 10) -> List[str]:
"""
过滤出JSON文件中字典键数量大于等于指定数量的文件
Args:
files: JSON文件路径列表
min_keys: 最小键数量要求默认为10
Returns:
符合条件的文件路径列表
"""
valid_files = []
for file_path in files:
try:
with open(file_path, 'r', encoding='utf-8') as f:
data = json.load(f)
# 检查是否为字典且键数量是否符合要求
if isinstance(data, dict) and len(data) >= min_keys:
valid_files.append(file_path)
else:
print(f"跳过文件 {os.path.basename(file_path)}: 键数量不足 ({len(data)} < {min_keys})")
except Exception as e:
print(f"读取文件 {file_path} 时出错: {e}")
return valid_files
deal_files_filtered = filter_json_files_by_key_count(deal_files, min_keys=10)
not_deal_files_filtered = filter_json_files_by_key_count(not_deal_files, min_keys=10)
num_samples = 8
# 计算每类需要选取的数量
num_deal_needed = min(4, len(deal_files_filtered)) # 最多选4个成交文件
num_not_deal_needed = min(4, len(not_deal_files_filtered)) # 最多选4个未成交文件
# 如果某类文件不足,从另一类补足
if num_deal_needed + num_not_deal_needed < num_samples:
if len(deal_files_filtered) > num_deal_needed:
num_deal_needed = min(num_samples, len(deal_files_filtered))
elif len(not_deal_files_filtered) > num_not_deal_needed:
num_not_deal_needed = min(num_samples, len(not_deal_files_filtered))
# 随机选取文件
selected_deal_files = random.sample(deal_files_filtered, min(num_deal_needed, len(deal_files_filtered))) if deal_files_filtered else []
selected_not_deal_files = random.sample(not_deal_files_filtered, min(num_not_deal_needed, len(not_deal_files_filtered))) if not_deal_files_filtered else []
# 合并选中的文件
selected_files = selected_deal_files + selected_not_deal_files
# 如果总数不足8个尝试从原始文件中随机选取补足
if len(selected_files) < num_samples:
all_files = deal_files + not_deal_files
# 排除已选的文件
remaining_files = [f for f in all_files if f not in selected_files]
additional_needed = num_samples - len(selected_files)
if remaining_files:
additional_files = random.sample(remaining_files, min(additional_needed, len(remaining_files)))
selected_files.extend(additional_files)
true_labels = []
for i, file_path in enumerate(selected_files):
folder_type = "未成交" if "not_deal" in file_path else "成交"
true_labels.append(folder_type)
# 使用inference_batch接口进行批量推理
if selected_files:
print("\n开始批量推理...")
try:
batch_result = engine.inference_batch(selected_files)
print(batch_result)
print(true_labels)
except Exception as e:
print(f"推理过程中出错: {e}")
else:
print("未找到符合条件的文件进行推理")
print("\n推理端口测试完成!")
from model import TransClassifier
from transformers import AutoTokenizer
from data_process import extract_json_data, Formatter
import torch
import json
from typing import Dict, List, Optional
import os
import random
import warnings
warnings.filterwarnings("ignore")
valid_keys = [
"Core_Fear_Source", "Pain_Threshold", "Time_Window_Pressure", "Helplessness_Index",
"Social_Shame", "Payer_Decision_Maker", "Hidden_Wealth_Proof", "Price_Sensitivity",
"Sunk_Cost", "Compensatory_Spending", "Trust_Deficit", "Secret_Resistance", "Family_Sabotage",
"Low_Self_Efficacy", "Attribution_Barrier", "Emotional_Trigger", "Ultimatum_Event", "Expectation_Bonus",
"Competitor_Mindset", "Cognitive_Stage", "Follow_up_Priority", "Last_Interaction", "Referral_Potential"
]
ch_valid_keys = [
"核心恐惧源", "疼痛阈值", "时间窗口压力", "无助指数",
"社会羞耻感", "付款决策者", "隐藏财富证明", "价格敏感度",
"沉没成本", "补偿性消费", "信任赤字", "秘密抵触情绪", "家庭破坏",
"低自我效能感", "归因障碍", "情绪触发点", "最后通牒事件", "期望加成",
"竞争者心态", "认知阶段", "跟进优先级", "最后互动时间", "推荐潜力"
]
all_keys = valid_keys + ["session_id", "label"]
en2ch = {en:ch for en, ch in zip(valid_keys, ch_valid_keys)}
d1_keys = valid_keys[:5]
d2_keys = valid_keys[5:10]
d3_keys = valid_keys[10:15]
d4_keys = valid_keys[15:19]
d5_keys = valid_keys[19:23]
class InferenceEngine:
def __init__(self, backbone_dir: str, ckpt_path: str = "best_ckpt.pth", device: str = "cuda"):
self.backbone_dir = backbone_dir
self.ckpt_path = ckpt_path
self.device = device
# 加载 tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(backbone_dir)
print(f"Tokenizer loaded from {backbone_dir}")
# 加载模型
self.model = TransClassifier(backbone_dir, device)
self.model.to(device)
if self.ckpt_path:
self.model.load_state_dict(torch.load(ckpt_path, map_location=device))
print(f"Model loaded from {ckpt_path}")
else:
print("Warning: No checkpoint path provided. Using untrained model.")
self.model.eval()
print("Inference engine initialized successfully.")
self.formatter = Formatter(en2ch)
def inference_batch(self, json_list: List[str]) -> dict:
"""
批量推理函数,输入为 JSON 字符串列表输出为包含转换概率的字典列表。为防止OOM列表最大长度为8。
请注意Json文件中的词条数必须大于等于10.
"""
# print(111111)
assert len(json_list) <= 8, "单次输入json文件数量不可超过8。"
id2feature = extract_json_data(json_list)
print(json.dumps(id2feature ,indent=2 ,ensure_ascii=False))
# id2feature
message_list = []
for id, feature in id2feature.items():
messages = self.formatter.get_llm_prompt(feature)
message_list.append(messages)
inputs = self.tokenizer.apply_chat_template(
message_list,
tokenize=False,
add_generation_prompt=True,
enable_thinking=False
)
model_inputs = self.tokenizer(
inputs,
padding=True,
truncation=True,
max_length=2048,
return_tensors="pt"
).to(self.device)
with torch.inference_mode():
with torch.amp.autocast(device_type=self.device, dtype=torch.bfloat16):
outputs = self.model(model_inputs)
# 1. 计算分类标签argmax
preds = torch.argmax(outputs, dim=1).cpu().numpy().tolist()
# 2. 计算softmax概率核心修正转CPU、转numpy、转列表解决Tensor序列化问题
outputs_float = outputs.float() # 转换为 float32 避免精度问题
probs = torch.softmax(outputs_float, dim=1) # probs: [B, 2]
# 转换为CPU的numpy数组再转列表每个样本对应2个类别的概率
probs = probs.cpu().numpy().tolist()
probs = [p[1] for p in probs] # 只保留类别1的概率
# 3. 计算置信度
confidence = [abs(p - 0.5) * 2 for p in probs]
# 返回格式labels是每个样本的分类标签列表probs是每个样本的类别概率列表confidence是每个样本的置信度列表
return {"labels": preds, "probs": probs, "confidence": confidence}
def inference_sample(self, json_path: str) -> dict:
"""
单样本推理函数,输入为 JSON 字符串路径,输出为包含转换概率的字典。
请注意Json文件中的词条数必须大于等于10.
"""
return self.inference_batch([json_path])
if __name__ == "__main__":
# 配置参数
backbone_dir = "Qwen3-1.7B"
ckpt_path = "best_ckpt.pth"
device = "cuda"
engine = InferenceEngine(backbone_dir, ckpt_path, device)