Upload files to "data_process/process"

This commit is contained in:
2026-01-29 19:01:26 +08:00
parent adf4e2699a
commit fac1969593
2 changed files with 332 additions and 0 deletions

View File

@@ -0,0 +1,172 @@
import random
import numpy as np
from torch.utils.data import Dataset, DataLoader, random_split
import torch
from transformers import AutoTokenizer
from .content_extract import extract_json_files, extract_json_data
valid_keys = [
"Core_Fear_Source", "Pain_Threshold", "Time_Window_Pressure", "Helplessness_Index",
"Social_Shame", "Payer_Decision_Maker", "Hidden_Wealth_Proof", "Price_Sensitivity",
"Sunk_Cost", "Compensatory_Spending", "Trust_Deficit", "Secret_Resistance", "Family_Sabotage",
"Low_Self_Efficacy", "Attribution_Barrier", "Emotional_Trigger", "Ultimatum_Event", "Expectation_Bonus",
"Competitor_Mindset", "Cognitive_Stage", "Follow_up_Priority", "Last_Interaction", "Referral_Potential"
]
ch_valid_keys = [
"核心恐惧源", "疼痛阈值", "时间窗口压力", "无助指数",
"社会羞耻感", "付款决策者", "隐藏财富证明", "价格敏感度",
"沉没成本", "补偿性消费", "信任赤字", "秘密抵触情绪", "家庭破坏",
"低自我效能感", "归因障碍", "情绪触发点", "最后通牒事件", "期望加成",
"竞争者心态", "认知阶段", "跟进优先级", "最后互动时间", "推荐潜力"
]
all_keys = valid_keys + ["session_id", "label"]
en2ch = {en:ch for en, ch in zip(valid_keys, ch_valid_keys)}
d1_keys = valid_keys[:5]
d2_keys = valid_keys[5:10]
d3_keys = valid_keys[10:15]
d4_keys = valid_keys[15:19]
d5_keys = valid_keys[19:23]
class Formatter:
def __init__(self, en2ch):
self.en2ch = en2ch
def _build_user_profile(self, profile: dict) -> str:
sections = []
sections.append("[客户画像]")
sections.append("\n [痛感和焦虑等级]")
for key in d1_keys:
if key in profile:
sections.append(f"{self.en2ch[key]}: {profile[key]}")
sections.append("\n [支付意愿与能力]")
for key in d2_keys:
if key in profile:
sections.append(f"{self.en2ch[key]}: {profile[key]}")
sections.append("\n [成交阻力与防御机制]")
for key in d3_keys:
if key in profile:
sections.append(f"{self.en2ch[key]}: {profile[key]}")
sections.append("\n [情绪钩子与成交切入点]")
for key in d4_keys:
if key in profile:
sections.append(f"{self.en2ch[key]}: {profile[key]}")
sections.append("\n [客户生命周期状态]")
for key in d5_keys:
if key in profile:
sections.append(f"{self.en2ch[key]}: {profile[key]}")
return "\n".join(sections)
def get_llm_prompt(self, features):
user_profile = self._build_user_profile(features)
prompt = f"""
你是一个销售心理学专家,请分析以下客户特征:
{user_profile}
请提取客户的核心购买驱动力和主要障碍后分析该客户的成交概率。将成交概率以JSON格式输出
{{
"conversion_probability": 0-1之间的数值
}}
"""
messages = [
{"role": "user", "content": prompt}
]
return messages
class TransDataset(Dataset):
def __init__(self, deal_data_folder, not_deal_data_folder):
self.deal_data = extract_json_data(extract_json_files(deal_data_folder))
self.not_deal_data = extract_json_data(extract_json_files(not_deal_data_folder))
self.formatter = Formatter(en2ch)
num_deal = len(self.deal_data)
num_not_deal = len(self.not_deal_data)
num_threshold = max(num_deal, num_not_deal) * 0.8
if not all([num_deal >= num_threshold, num_not_deal >= num_threshold]):
self._balance_samples()
self._build_samples()
def _build_samples(self):
self.samples = []
for id, features in self.deal_data.items():
messages = self.formatter.get_llm_prompt(features)
self.samples.append((id, messages, 1))
for id, features in self.not_deal_data.items():
messages = self.formatter.get_llm_prompt(features)
self.samples.append((id, messages, 0))
random.shuffle(self.samples)
print(f"total samples num: {len(self.samples)}, deal num: {len(self.deal_data)}, not deal num: {len(self.not_deal_data)}")
def _balance_samples(self):
random.seed(42)
np.random.seed(42)
not_deal_ids = list(self.not_deal_data.keys())
target_size = len(self.deal_data)
if len(not_deal_ids) > target_size:
selected_not_deal_ids = random.sample(not_deal_ids, target_size)
self.not_deal_data = {sid: self.not_deal_data[sid] for sid in selected_not_deal_ids}
def __len__(self):
return len(self.samples)
def __getitem__(self, idx):
id, prompt, label = self.samples[idx]
return id, prompt, label
def build_dataloader(deal_data_folder, not_deal_data_folder, batch_size):
dataset = TransDataset(deal_data_folder, not_deal_data_folder)
num_data = len(dataset)
train_size = int(0.8 * num_data)
val_size = int(0.1 * num_data)
test_size = num_data - train_size - val_size
print(f"train size: {train_size}")
print(f"val size: {val_size}")
print(f"test size: {test_size}")
train_dataset, val_dataset, test_dataset = random_split(
dataset,
[train_size, val_size, test_size],
generator=torch.Generator().manual_seed(42)
)
def collate_fn(batch):
ids = [item[0] for item in batch]
texts = [item[1] for item in batch]
labels = torch.tensor([item[2] for item in batch], dtype=torch.long)
return ids, texts, labels
train_loader = DataLoader(
train_dataset,
batch_size=batch_size,
shuffle=True,
collate_fn=collate_fn
)
val_loader = DataLoader(
val_dataset,
batch_size=batch_size,
shuffle=False,
collate_fn=collate_fn
)
test_loader = DataLoader(
test_dataset,
batch_size=batch_size,
shuffle=False,
collate_fn=collate_fn
)
return {"train": train_loader, "val": val_loader, "test": test_loader}