Upload files to "data_process/process"

This commit is contained in:
2026-01-29 19:01:26 +08:00
parent adf4e2699a
commit fac1969593
2 changed files with 332 additions and 0 deletions

View File

@@ -0,0 +1,172 @@
import random
import numpy as np
from torch.utils.data import Dataset, DataLoader, random_split
import torch
from transformers import AutoTokenizer
from .content_extract import extract_json_files, extract_json_data
valid_keys = [
"Core_Fear_Source", "Pain_Threshold", "Time_Window_Pressure", "Helplessness_Index",
"Social_Shame", "Payer_Decision_Maker", "Hidden_Wealth_Proof", "Price_Sensitivity",
"Sunk_Cost", "Compensatory_Spending", "Trust_Deficit", "Secret_Resistance", "Family_Sabotage",
"Low_Self_Efficacy", "Attribution_Barrier", "Emotional_Trigger", "Ultimatum_Event", "Expectation_Bonus",
"Competitor_Mindset", "Cognitive_Stage", "Follow_up_Priority", "Last_Interaction", "Referral_Potential"
]
ch_valid_keys = [
"核心恐惧源", "疼痛阈值", "时间窗口压力", "无助指数",
"社会羞耻感", "付款决策者", "隐藏财富证明", "价格敏感度",
"沉没成本", "补偿性消费", "信任赤字", "秘密抵触情绪", "家庭破坏",
"低自我效能感", "归因障碍", "情绪触发点", "最后通牒事件", "期望加成",
"竞争者心态", "认知阶段", "跟进优先级", "最后互动时间", "推荐潜力"
]
all_keys = valid_keys + ["session_id", "label"]
en2ch = {en:ch for en, ch in zip(valid_keys, ch_valid_keys)}
d1_keys = valid_keys[:5]
d2_keys = valid_keys[5:10]
d3_keys = valid_keys[10:15]
d4_keys = valid_keys[15:19]
d5_keys = valid_keys[19:23]
class Formatter:
def __init__(self, en2ch):
self.en2ch = en2ch
def _build_user_profile(self, profile: dict) -> str:
sections = []
sections.append("[客户画像]")
sections.append("\n [痛感和焦虑等级]")
for key in d1_keys:
if key in profile:
sections.append(f"{self.en2ch[key]}: {profile[key]}")
sections.append("\n [支付意愿与能力]")
for key in d2_keys:
if key in profile:
sections.append(f"{self.en2ch[key]}: {profile[key]}")
sections.append("\n [成交阻力与防御机制]")
for key in d3_keys:
if key in profile:
sections.append(f"{self.en2ch[key]}: {profile[key]}")
sections.append("\n [情绪钩子与成交切入点]")
for key in d4_keys:
if key in profile:
sections.append(f"{self.en2ch[key]}: {profile[key]}")
sections.append("\n [客户生命周期状态]")
for key in d5_keys:
if key in profile:
sections.append(f"{self.en2ch[key]}: {profile[key]}")
return "\n".join(sections)
def get_llm_prompt(self, features):
user_profile = self._build_user_profile(features)
prompt = f"""
你是一个销售心理学专家,请分析以下客户特征:
{user_profile}
请提取客户的核心购买驱动力和主要障碍后分析该客户的成交概率。将成交概率以JSON格式输出
{{
"conversion_probability": 0-1之间的数值
}}
"""
messages = [
{"role": "user", "content": prompt}
]
return messages
class TransDataset(Dataset):
def __init__(self, deal_data_folder, not_deal_data_folder):
self.deal_data = extract_json_data(extract_json_files(deal_data_folder))
self.not_deal_data = extract_json_data(extract_json_files(not_deal_data_folder))
self.formatter = Formatter(en2ch)
num_deal = len(self.deal_data)
num_not_deal = len(self.not_deal_data)
num_threshold = max(num_deal, num_not_deal) * 0.8
if not all([num_deal >= num_threshold, num_not_deal >= num_threshold]):
self._balance_samples()
self._build_samples()
def _build_samples(self):
self.samples = []
for id, features in self.deal_data.items():
messages = self.formatter.get_llm_prompt(features)
self.samples.append((id, messages, 1))
for id, features in self.not_deal_data.items():
messages = self.formatter.get_llm_prompt(features)
self.samples.append((id, messages, 0))
random.shuffle(self.samples)
print(f"total samples num: {len(self.samples)}, deal num: {len(self.deal_data)}, not deal num: {len(self.not_deal_data)}")
def _balance_samples(self):
random.seed(42)
np.random.seed(42)
not_deal_ids = list(self.not_deal_data.keys())
target_size = len(self.deal_data)
if len(not_deal_ids) > target_size:
selected_not_deal_ids = random.sample(not_deal_ids, target_size)
self.not_deal_data = {sid: self.not_deal_data[sid] for sid in selected_not_deal_ids}
def __len__(self):
return len(self.samples)
def __getitem__(self, idx):
id, prompt, label = self.samples[idx]
return id, prompt, label
def build_dataloader(deal_data_folder, not_deal_data_folder, batch_size):
dataset = TransDataset(deal_data_folder, not_deal_data_folder)
num_data = len(dataset)
train_size = int(0.8 * num_data)
val_size = int(0.1 * num_data)
test_size = num_data - train_size - val_size
print(f"train size: {train_size}")
print(f"val size: {val_size}")
print(f"test size: {test_size}")
train_dataset, val_dataset, test_dataset = random_split(
dataset,
[train_size, val_size, test_size],
generator=torch.Generator().manual_seed(42)
)
def collate_fn(batch):
ids = [item[0] for item in batch]
texts = [item[1] for item in batch]
labels = torch.tensor([item[2] for item in batch], dtype=torch.long)
return ids, texts, labels
train_loader = DataLoader(
train_dataset,
batch_size=batch_size,
shuffle=True,
collate_fn=collate_fn
)
val_loader = DataLoader(
val_dataset,
batch_size=batch_size,
shuffle=False,
collate_fn=collate_fn
)
test_loader = DataLoader(
test_dataset,
batch_size=batch_size,
shuffle=False,
collate_fn=collate_fn
)
return {"train": train_loader, "val": val_loader, "test": test_loader}

View File

@@ -0,0 +1,160 @@
from .content_extract import extract_json_files, extract_json_data
from collections import Counter
import matplotlib.pyplot as plt
import json
import pandas as pd
from typing import Dict, List, Tuple, Optional
valid_keys = [
"Core_Fear_Source", "Pain_Threshold", "Time_Window_Pressure", "Helplessness_Index",
"Social_Shame", "Payer_Decision_Maker", "Hidden_Wealth_Proof", "Price_Sensitivity",
"Sunk_Cost", "Compensatory_Spending", "Trust_Deficit", "Secret_Resistance", "Family_Sabotage",
"Low_Self_Efficacy", "Attribution_Barrier", "Emotional_Trigger", "Ultimatum_Event", "Expectation_Bonus",
"Competitor_Mindset", "Cognitive_Stage", "Follow_up_Priority", "Last_Interaction", "Referral_Potential"
]
ch_valid_keys = [
"核心恐惧源", "疼痛阈值", "时间窗口压力", "无助指数",
"社会羞耻感", "付款决策者", "隐藏财富证明", "价格敏感度",
"沉没成本", "补偿性消费", "信任赤字", "秘密抵触情绪", "家庭破坏",
"低自我效能感", "归因障碍", "情绪触发点", "最后通牒事件", "期望加成",
"竞争者心态", "认知阶段", "跟进优先级", "最后互动时间", "推荐潜力"
]
all_keys = valid_keys + ["session_id", "label"]
en2ch = {en:ch for en, ch in zip(valid_keys, ch_valid_keys)}
d1_keys = valid_keys[:5]
d2_keys = valid_keys[5:10]
d3_keys = valid_keys[10:15]
d4_keys = valid_keys[15:19]
d5_keys = valid_keys[19:23]
class StatisticData:
def __init__(self, folder: str):
self.data = extract_json_data(extract_json_files(folder))
self.session_ids = list(self.data.keys())
self.labels = list(self.data.values())
self.priorities = ["S", "A", "B", "C"]
def statistic_priority(self):
priority_full_counter = Counter()
priority_counter = Counter()
priority_full = [data["Follow_up_Priority"] for data in self.labels]
priority_full_counter.update(priority_full)
priority = [p[0].upper() for p in priority_full]
self._check_priority(priority)
priority_counter.update(priority)
return priority_full_counter, priority_counter
def _check_priority(self, priorities: list):
for priority in priorities:
if priority not in self.priorities:
raise ValueError(f"Invalid priority {priority}")
def statistic_other_keys(self):
key2counter = {}
for label in self.labels:
for key in label.keys():
if key not in key2counter:
key2counter[key] = Counter()
key2counter[key].update([label[key]])
return key2counter
def main(self):
priority_full_counter, priority_counter = self.statistic_priority()
key2counter = self.statistic_other_keys()
return priority_full_counter, priority_counter, key2counter
class Outputer:
def __init__(self, deal_data, not_deal_data):
self.deal_priority_full, self.deal_priority, self.deal_key2counter = deal_data
self.not_deal_priority_full, self.not_deal_priority, self.not_deal_key2counter = not_deal_data
self.deal_key2counter['Follow_up_Priority'] = self.deal_priority_full
self.not_deal_key2counter['Follow_up_Priority'] = self.not_deal_priority_full
def visualize_priority(self):
# 准备数据
deal_labels = list(self.deal_priority.keys())
deal_sizes = list(self.deal_priority.values())
not_deal_labels = list(self.not_deal_priority.keys())
not_deal_sizes = list(self.not_deal_priority.values())
colors = ['#ff9999','#66b3ff','#99ff99','#ffcc99']
# 创建包含两个子图的图表
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 6))
# 成交数据饼状图
ax1.pie(deal_sizes, labels=deal_labels, colors=colors, autopct='%1.1f%%', startangle=90)
ax1.axis('equal')
ax1.set_title('Priority Distribution (Deal)')
# 非成交数据饼状图
ax2.pie(not_deal_sizes, labels=not_deal_labels, colors=colors, autopct='%1.1f%%', startangle=90)
ax2.axis('equal')
ax2.set_title('Priority Distribution (Not Deal)')
# 整体标题
plt.suptitle('Priority Distribution Comparison', fontsize=16)
# 保存和显示
plt.tight_layout()
plt.savefig('priority_comparison.png', bbox_inches='tight')
print("Chart saved to: priority_comparison.png")
plt.show()
def save_key2counter_excel(self):
excel_path = "key2counter_comparison.xlsx"
# 获取所有唯一的key
all_keys = set(self.deal_key2counter.keys()) | set(self.not_deal_key2counter.keys())
with pd.ExcelWriter(excel_path, engine='openpyxl') as writer:
for key in all_keys:
# 准备成交数据
deal_counter = self.deal_key2counter.get(key, Counter())
deal_dict = dict(deal_counter)
# 准备非成交数据
not_deal_counter = self.not_deal_key2counter.get(key, Counter())
not_deal_dict = dict(not_deal_counter)
# 获取所有唯一的值
all_values = set(deal_dict.keys()) | set(not_deal_dict.keys())
# 创建数据框
data = []
for value in all_values:
deal_count = deal_dict.get(value, 0)
not_deal_count = not_deal_dict.get(value, 0)
data.append({
'value': value,
'deal_count': deal_count,
'not_deal_count': not_deal_count,
'total': deal_count + not_deal_count
})
# 转换为DataFrame并排序
df = pd.DataFrame(data)
df = df.sort_values('total', ascending=False)
# 计算该字段的总样本数
total_samples = df['total'].sum()
# 添加总样本数行
total_row = pd.DataFrame([{
'value': 'Total Samples',
'deal_count': sum(deal_dict.values()),
'not_deal_count': sum(not_deal_dict.values()),
'total': total_samples
}])
df = pd.concat([df, total_row], ignore_index=True)
# 保存到Excel
sheet_name = key[:31] # 限制sheet名长度
df.to_excel(writer, sheet_name=sheet_name, index=False)
print(f"Excel saved to: {excel_path}")