from model import TransClassifier from transformers import AutoTokenizer from data_process import extract_json_data, Formatter import torch import json from typing import Dict, List, Optional import os import random import warnings warnings.filterwarnings("ignore") valid_keys = [ "Core_Fear_Source", "Pain_Threshold", "Time_Window_Pressure", "Helplessness_Index", "Social_Shame", "Payer_Decision_Maker", "Hidden_Wealth_Proof", "Price_Sensitivity", "Sunk_Cost", "Compensatory_Spending", "Trust_Deficit", "Secret_Resistance", "Family_Sabotage", "Low_Self_Efficacy", "Attribution_Barrier", "Emotional_Trigger", "Ultimatum_Event", "Expectation_Bonus", "Competitor_Mindset", "Cognitive_Stage", "Follow_up_Priority", "Last_Interaction", "Referral_Potential" ] ch_valid_keys = [ "核心恐惧源", "疼痛阈值", "时间窗口压力", "无助指数", "社会羞耻感", "付款决策者", "隐藏财富证明", "价格敏感度", "沉没成本", "补偿性消费", "信任赤字", "秘密抵触情绪", "家庭破坏", "低自我效能感", "归因障碍", "情绪触发点", "最后通牒事件", "期望加成", "竞争者心态", "认知阶段", "跟进优先级", "最后互动时间", "推荐潜力" ] all_keys = valid_keys + ["session_id", "label"] en2ch = {en:ch for en, ch in zip(valid_keys, ch_valid_keys)} d1_keys = valid_keys[:5] d2_keys = valid_keys[5:10] d3_keys = valid_keys[10:15] d4_keys = valid_keys[15:19] d5_keys = valid_keys[19:23] class InferenceEngine: def __init__(self, backbone_dir: str, ckpt_path: str = "best_ckpt.pth", device: str = "cuda"): self.backbone_dir = backbone_dir self.ckpt_path = ckpt_path self.device = device # 加载 tokenizer self.tokenizer = AutoTokenizer.from_pretrained(backbone_dir) print(f"Tokenizer loaded from {backbone_dir}") # 加载模型 self.model = TransClassifier(backbone_dir, device) self.model.to(device) if self.ckpt_path: self.model.load_state_dict(torch.load(ckpt_path, map_location=device)) print(f"Model loaded from {ckpt_path}") else: print("Warning: No checkpoint path provided. Using untrained model.") self.model.eval() print("Inference engine initialized successfully.") self.formatter = Formatter(en2ch) def inference_batch(self, json_list: List[str]) -> dict: """ 批量推理函数,输入为 JSON 字符串列表,输出为包含转换概率的字典列表。为防止OOM,列表最大长度为8。 请注意Json文件中的词条数必须大于等于10. """ # print(111111) assert len(json_list) <= 10, "单次输入json文件数量不可超过8。" id2feature = extract_json_data(json_list) print(json.dumps(id2feature ,indent=2 ,ensure_ascii=False)) # id2feature message_list = [] for id, feature in id2feature.items(): messages = self.formatter.get_llm_prompt(feature) message_list.append(messages) inputs = self.tokenizer.apply_chat_template( message_list, tokenize=False, add_generation_prompt=True, enable_thinking=False ) model_inputs = self.tokenizer( inputs, padding=True, truncation=True, max_length=2048, return_tensors="pt" ).to(self.device) with torch.inference_mode(): with torch.amp.autocast(device_type=self.device, dtype=torch.bfloat16): outputs = self.model(model_inputs) # 1. 计算分类标签(argmax) preds = torch.argmax(outputs, dim=1).cpu().numpy().tolist() # 2. 计算softmax概率(核心修正:转CPU、转numpy、转列表,解决Tensor序列化问题) outputs_float = outputs.float() # 转换为 float32 避免精度问题 probs = torch.softmax(outputs_float, dim=1) # probs: [B, 2] # 转换为CPU的numpy数组,再转列表(每个样本对应2个类别的概率) probs = probs.cpu().numpy().tolist() probs = [p[1] for p in probs] # 只保留类别1的概率 # 3. 计算置信度 confidence = [abs(p - 0.5) * 2 for p in probs] # 返回格式:labels是每个样本的分类标签列表,probs是每个样本的类别概率列表,confidence是每个样本的置信度列表 return {"labels": preds, "probs": probs, "confidence": confidence} def inference_sample(self, json_path: str) -> dict: """ 单样本推理函数,输入为 JSON 字符串路径,输出为包含转换概率的字典。 请注意Json文件中的词条数必须大于等于10. """ return self.inference_batch([json_path]) def inference( self, featurs : dict[str ,dict] ): assert len(featurs) <= 10, "单次输入json文件数量不可超过8。" message_list = [] for id, feature in featurs.items(): messages = self.formatter.get_llm_prompt(feature) message_list.append(messages) inputs = self.tokenizer.apply_chat_template( message_list, tokenize=False, add_generation_prompt=True, enable_thinking=False ) model_inputs = self.tokenizer( inputs, padding=True, truncation=True, max_length=2048, return_tensors="pt" ).to(self.device) with torch.inference_mode(): with torch.amp.autocast(device_type=self.device, dtype=torch.bfloat16): outputs = self.model(model_inputs) # 1. 计算分类标签(argmax) preds = torch.argmax(outputs, dim=1).cpu().numpy().tolist() # 2. 计算softmax概率(核心修正:转CPU、转numpy、转列表,解决Tensor序列化问题) outputs_float = outputs.float() # 转换为 float32 避免精度问题 probs = torch.softmax(outputs_float, dim=1) # probs: [B, 2] # 转换为CPU的numpy数组,再转列表(每个样本对应2个类别的概率) probs = probs.cpu().numpy().tolist() probs = [p[1] for p in probs] # 只保留类别1的概率 # 3. 计算置信度 confidence = [abs(p - 0.5) * 2 for p in probs] # 返回格式:labels是每个样本的分类标签列表,probs是每个样本的类别概率列表,confidence是每个样本的置信度列表 return {"labels": preds, "probs": probs, "confidence": confidence} if __name__ == "__main__": # 配置参数 backbone_dir = "Qwen3-1.7B" ckpt_path = "best_ckpt.pth" device = "cuda" engine = InferenceEngine(backbone_dir, ckpt_path, device)