import torch import torch.nn as nn import torch.nn.functional as F from transformers import AutoModel class TransClassifier(nn.Module): def __init__(self, model_dir: str, device: str="cuda"): super().__init__() self.backbone = AutoModel.from_pretrained( model_dir, dtype = "bfloat16" ).to(device).eval() self.device = device self.torch_dtype = torch.bfloat16 self.hidden_size = self.backbone.config.hidden_size self.classifier = nn.Sequential( nn.LayerNorm(self.hidden_size), nn.Linear(self.hidden_size, self.hidden_size//2), nn.GELU(), nn.Dropout(0.3), nn.Linear(self.hidden_size//2, self.hidden_size//4), nn.GELU(), nn.Dropout(0.2), nn.Linear(self.hidden_size//4, 2) ).to(device=device, dtype=self.torch_dtype) for param in self.backbone.parameters(): param.requires_grad = False def forward(self, model_inputs: dict): outputs = self.backbone(**model_inputs) last_hidden_state = outputs.last_hidden_state # take last token hidden state cls_hidden_state = last_hidden_state[:, -1, :] logits = self.classifier(cls_hidden_state) return logits if __name__ == "__main__": model_dir = r"C:\Users\GA\Desktop\models\Qwen3-1.7B" device = "cuda" model = TransClassifier(model_dir, device) print(model.hidden_size) print(model) total_params = sum(p.numel() for p in model.parameters()) trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad) print(f"总参数量: {total_params:,}") print(f"可训练参数量: {trainable_params:,}")