Upload files to "OHS"

This commit is contained in:
2026-01-29 18:53:08 +08:00
parent c17ed4c461
commit e661300459
6 changed files with 3439 additions and 0 deletions

110
OHS/Reranker.py Normal file
View File

@@ -0,0 +1,110 @@
import torch
import torch.nn.functional as F
from typing import List, Tuple, Dict, Any
from transformers import AutoModelForCausalLM, AutoTokenizer
from OHS.Script import *
class Reranker:
def __init__(self, model_dir: str, device):
self.tokenizer = AutoTokenizer.from_pretrained(model_dir, padding_side='left', use_fast=True)
self.model = AutoModelForCausalLM.from_pretrained(
model_dir,
dtype="bfloat16",
attn_implementation="flash_attention_2"
).eval()
self.model.to(device)
self.token_false_id = self.tokenizer.convert_tokens_to_ids("no")
self.token_true_id = self.tokenizer.convert_tokens_to_ids("yes")
self.max_length = 8192
self.prefix = "<|im_start|>system\nJudge whether the Document meets the requirements based on the Query and the Instruct provided. Note that the answer can only be \"yes\" or \"no\".<|im_end|>\n<|im_start|>user\n"
self.suffix = "<|im_end|>\n<|im_start|>assistant\n<think>\n\n</think>\n\n"
self.prefix_tokens = self.tokenizer.encode(self.prefix, add_special_tokens=False)
self.suffix_tokens = self.tokenizer.encode(self.suffix, add_special_tokens=False)
self.task_description4document = "给定客户异议,根据话术的目标解决问题和目标客户特征,判断该异议处理话术是否能够解决该异议。"
self.task_description4script = "给定客户异议和相关处理话术,判断该异议处理话术是否能够解决该异议。"
def format_instruction4document(self, query: str, document: str) -> str:
return f"<Instruct>: {self.task_description4document}\n<Query>: {query}\n<Document>: {document}"
def format_instruction4script(self, query: str, document: str) -> str:
return f"<Instruct>: {self.task_description4script}\n<Query>: {query}\n<Document>: {document}"
def _process_inputs(self, texts: List[str]) -> Dict[str, torch.Tensor]:
inputs = self.tokenizer(
texts,
padding=False,
truncation='longest_first',
return_attention_mask=False,
max_length=self.max_length - len(self.prefix_tokens) - len(self.suffix_tokens)
)
for i, ele in enumerate(inputs['input_ids']):
inputs['input_ids'][i] = self.prefix_tokens + ele + self.suffix_tokens
inputs = self.tokenizer.pad(inputs, padding=True, return_tensors="pt", max_length=self.max_length)
for key in inputs:
inputs[key] = inputs[key].to(self.model.device)
return inputs
@torch.no_grad()
def compute_scores4document(self, query: str, documents: List[str]) -> List[float]:
pairs = [self.format_instruction4document(query, doc) for doc in documents]
inputs = self._process_inputs(pairs)
batch_scores = self.model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, self.token_true_id]
false_vector = batch_scores[:, self.token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = F.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
@torch.no_grad()
def compute_scores4script(self, query: str, documents: List[str]) -> List[float]:
pairs = [self.format_instruction4script(query, doc) for doc in documents]
inputs = self._process_inputs(pairs)
batch_scores = self.model(**inputs).logits[:, -1, :]
true_vector = batch_scores[:, self.token_true_id]
false_vector = batch_scores[:, self.token_false_id]
batch_scores = torch.stack([false_vector, true_vector], dim=1)
batch_scores = F.log_softmax(batch_scores, dim=1)
scores = batch_scores[:, 1].exp().tolist()
return scores
def rerank(self, query: str, top_scripts: List[ObjectionHandleScript], rerank_N: int = 10) -> List[Tuple[ObjectionHandleScript, float]]:
"""
重排序函数
Args:
query: 查询文本
top_scripts: 召回的话术列表,每个元素为话术对象
Returns:
重排序后的话术列表,每个元素为(话术对象, 重排序分数)
"""
if not top_scripts:
return []
scripts = [script.get_script() for script in top_scripts]
documents = [script.get_script() for script in top_scripts]
document_scores = self.compute_scores4document(query, documents)
script_scores = self.compute_scores4script(query, scripts)
results = []
for i, (script, doc_score, scr_score) in enumerate(zip(top_scripts, document_scores, script_scores)):
final_score = 0.6 * doc_score + 0.4 * scr_score
results.append((script, final_score))
results.sort(key=lambda x: x[1], reverse=True)
results = results[:rerank_N]
return results

77
OHS/Script.py Normal file
View File

@@ -0,0 +1,77 @@
import json
import numpy as np
from typing import List, Dict, Tuple, Any, Optional
from dataclasses import dataclass
from pathlib import Path
@dataclass
class ObjectionHandleScript:
def __init__(self, id: int, script: str, target_problem: str, target_customer: str):
self.id: int = id
self.script: str = script
self.target_problem: str = target_problem
self.target_customer: str = target_customer
def get_id(self):
return self.id
def get_script(self):
return self.script
def get_target_problem(self):
return self.target_problem
def get_target_customer(self):
"""
用于Reranker阶段的重排序
"""
return self.target_customer
def get_document_text(self) -> str:
"""
用于Embedding阶段召回和Reranker阶段的重排序
"""
return f"目标解决问题: {self.target_problem}\n目标客户特征: {self.target_customer}"
class ScriptDataset:
def __init__(self, json_file: str):
self.json_file = Path(json_file)
with open(json_file, 'r', encoding='utf-8') as f:
raw_data = json.load(f)
assert isinstance(raw_data, list), "JSON file should contain a list of objects"
self.scripts = []
for idx, e in enumerate(raw_data):
self.scripts.append(ObjectionHandleScript(
id=idx,
script=e['话术本身'],
target_problem=e['目标解决问题'],
target_customer=e['目标客户特征']
))
self.index_file = self.json_file.with_suffix('.faiss')
self.vectors_file = self.json_file.with_suffix('.vectors.npy')
self.metadata_file = self.json_file.with_suffix('.metadata.pkl')
self.faiss_index = None
self.document_vectors = None
def get_script(self, idx) -> ObjectionHandleScript:
return self.scripts[idx]
def __len__(self):
return len(self.scripts)
def __getitem__(self, idx):
return self.scripts[idx]
def get_all_document_texts(self) -> List[str]:
return [script.get_document_text() for script in self.scripts]
def get_all_script_texts(self) -> List[str]:
return [script.get_script() for script in self.scripts]
if __name__=="__main__":
json_path = "scripts_deduplicated.json"
dataset = ScriptDataset(json_path)

Binary file not shown.

File diff suppressed because one or more lines are too long

Binary file not shown.

Binary file not shown.