119 lines
5.0 KiB
Python
119 lines
5.0 KiB
Python
from model import TransClassifier
|
||
from transformers import AutoTokenizer
|
||
from data_process import extract_json_data, Formatter
|
||
import torch
|
||
import json
|
||
from typing import Dict, List, Optional
|
||
import os
|
||
import random
|
||
import warnings
|
||
warnings.filterwarnings("ignore")
|
||
|
||
valid_keys = [
|
||
"Core_Fear_Source", "Pain_Threshold", "Time_Window_Pressure", "Helplessness_Index",
|
||
"Social_Shame", "Payer_Decision_Maker", "Hidden_Wealth_Proof", "Price_Sensitivity",
|
||
"Sunk_Cost", "Compensatory_Spending", "Trust_Deficit", "Secret_Resistance", "Family_Sabotage",
|
||
"Low_Self_Efficacy", "Attribution_Barrier", "Emotional_Trigger", "Ultimatum_Event", "Expectation_Bonus",
|
||
"Competitor_Mindset", "Cognitive_Stage", "Follow_up_Priority", "Last_Interaction", "Referral_Potential"
|
||
]
|
||
ch_valid_keys = [
|
||
"核心恐惧源", "疼痛阈值", "时间窗口压力", "无助指数",
|
||
"社会羞耻感", "付款决策者", "隐藏财富证明", "价格敏感度",
|
||
"沉没成本", "补偿性消费", "信任赤字", "秘密抵触情绪", "家庭破坏",
|
||
"低自我效能感", "归因障碍", "情绪触发点", "最后通牒事件", "期望加成",
|
||
"竞争者心态", "认知阶段", "跟进优先级", "最后互动时间", "推荐潜力"
|
||
]
|
||
all_keys = valid_keys + ["session_id", "label"]
|
||
en2ch = {en:ch for en, ch in zip(valid_keys, ch_valid_keys)}
|
||
d1_keys = valid_keys[:5]
|
||
d2_keys = valid_keys[5:10]
|
||
d3_keys = valid_keys[10:15]
|
||
d4_keys = valid_keys[15:19]
|
||
d5_keys = valid_keys[19:23]
|
||
|
||
class InferenceEngine:
|
||
def __init__(self, backbone_dir: str, ckpt_path: str = "best_ckpt.pth", device: str = "cuda"):
|
||
self.backbone_dir = backbone_dir
|
||
self.ckpt_path = ckpt_path
|
||
self.device = device
|
||
|
||
# 加载 tokenizer
|
||
self.tokenizer = AutoTokenizer.from_pretrained(backbone_dir)
|
||
print(f"Tokenizer loaded from {backbone_dir}")
|
||
|
||
# 加载模型
|
||
self.model = TransClassifier(backbone_dir, device)
|
||
self.model.to(device)
|
||
if self.ckpt_path:
|
||
self.model.load_state_dict(torch.load(ckpt_path, map_location=device))
|
||
print(f"Model loaded from {ckpt_path}")
|
||
else:
|
||
print("Warning: No checkpoint path provided. Using untrained model.")
|
||
self.model.eval()
|
||
print("Inference engine initialized successfully.")
|
||
|
||
self.formatter = Formatter(en2ch)
|
||
|
||
def inference_batch(self, json_list: List[str]) -> dict:
|
||
"""
|
||
批量推理函数,输入为 JSON 字符串列表,输出为包含转换概率的字典列表。为防止OOM,列表最大长度为8。
|
||
请注意Json文件中的词条数必须大于等于10.
|
||
"""
|
||
# print(111111)
|
||
assert len(json_list) <= 8, "单次输入json文件数量不可超过8。"
|
||
id2feature = extract_json_data(json_list)
|
||
print(json.dumps(id2feature ,indent=2 ,ensure_ascii=False))
|
||
# id2feature
|
||
|
||
message_list = []
|
||
for id, feature in id2feature.items():
|
||
messages = self.formatter.get_llm_prompt(feature)
|
||
message_list.append(messages)
|
||
|
||
inputs = self.tokenizer.apply_chat_template(
|
||
message_list,
|
||
tokenize=False,
|
||
add_generation_prompt=True,
|
||
enable_thinking=False
|
||
)
|
||
model_inputs = self.tokenizer(
|
||
inputs,
|
||
padding=True,
|
||
truncation=True,
|
||
max_length=2048,
|
||
return_tensors="pt"
|
||
).to(self.device)
|
||
|
||
with torch.inference_mode():
|
||
with torch.amp.autocast(device_type=self.device, dtype=torch.bfloat16):
|
||
outputs = self.model(model_inputs)
|
||
|
||
# 1. 计算分类标签(argmax)
|
||
preds = torch.argmax(outputs, dim=1).cpu().numpy().tolist()
|
||
|
||
# 2. 计算softmax概率(核心修正:转CPU、转numpy、转列表,解决Tensor序列化问题)
|
||
outputs_float = outputs.float() # 转换为 float32 避免精度问题
|
||
probs = torch.softmax(outputs_float, dim=1) # probs: [B, 2]
|
||
# 转换为CPU的numpy数组,再转列表(每个样本对应2个类别的概率)
|
||
probs = probs.cpu().numpy().tolist()
|
||
probs = [p[1] for p in probs] # 只保留类别1的概率
|
||
|
||
# 3. 计算置信度
|
||
confidence = [abs(p - 0.5) * 2 for p in probs]
|
||
# 返回格式:labels是每个样本的分类标签列表,probs是每个样本的类别概率列表,confidence是每个样本的置信度列表
|
||
return {"labels": preds, "probs": probs, "confidence": confidence}
|
||
|
||
def inference_sample(self, json_path: str) -> dict:
|
||
"""
|
||
单样本推理函数,输入为 JSON 字符串路径,输出为包含转换概率的字典。
|
||
请注意Json文件中的词条数必须大于等于10.
|
||
"""
|
||
return self.inference_batch([json_path])
|
||
|
||
if __name__ == "__main__":
|
||
# 配置参数
|
||
backbone_dir = "Qwen3-1.7B"
|
||
ckpt_path = "best_ckpt.pth"
|
||
device = "cuda"
|
||
|
||
engine = InferenceEngine(backbone_dir, ckpt_path, device) |