Files
deal-classification/model/modelling.py
2026-01-29 19:02:29 +08:00

52 lines
1.8 KiB
Python

import torch
import torch.nn as nn
import torch.nn.functional as F
from transformers import AutoModel
class TransClassifier(nn.Module):
def __init__(self, model_dir: str, device: str="cuda"):
super().__init__()
self.backbone = AutoModel.from_pretrained(
model_dir,
dtype = "bfloat16"
).to(device).eval()
self.device = device
self.torch_dtype = torch.bfloat16
self.hidden_size = self.backbone.config.hidden_size
self.classifier = nn.Sequential(
nn.LayerNorm(self.hidden_size),
nn.Linear(self.hidden_size, self.hidden_size//2),
nn.GELU(),
nn.Dropout(0.3),
nn.Linear(self.hidden_size//2, self.hidden_size//4),
nn.GELU(),
nn.Dropout(0.2),
nn.Linear(self.hidden_size//4, 2)
).to(device=device, dtype=self.torch_dtype)
for param in self.backbone.parameters():
param.requires_grad = False
def forward(self, model_inputs: dict):
outputs = self.backbone(**model_inputs)
last_hidden_state = outputs.last_hidden_state
# take last token hidden state
cls_hidden_state = last_hidden_state[:, -1, :]
logits = self.classifier(cls_hidden_state)
return logits
if __name__ == "__main__":
model_dir = r"C:\Users\GA\Desktop\models\Qwen3-1.7B"
device = "cuda"
model = TransClassifier(model_dir, device)
print(model.hidden_size)
print(model)
total_params = sum(p.numel() for p in model.parameters())
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"总参数量: {total_params:,}")
print(f"可训练参数量: {trainable_params:,}")